Convolution Operation: The Foundation of CNNs
Master the convolution operation through interactive visualizations of sliding windows, feature detection, and the mathematical mechanics behind convolutional neural networks.
Explore machine learning concepts related to deep-learning. Clear explanations and practical insights.
Master the convolution operation through interactive visualizations of sliding windows, feature detection, and the mathematical mechanics behind convolutional neural networks.
Understand cross-entropy loss through interactive visualizations of probability distributions, gradient flow, and its connection to maximum likelihood estimation.
Master dilated (atrous) convolutions through interactive visualizations of dilation rates, receptive field expansion, gridding artifacts, and applications in segmentation.
Understand Feature Pyramid Networks (FPN) through interactive visualizations of top-down pathways, lateral connections, and multi-scale object detection.
Explore how receptive fields grow through CNN layers with interactive visualizations of effective vs theoretical fields, architecture comparisons, and pixel contributions.
Explore the latent space of Variational Autoencoders through interactive visualizations of encoding, decoding, interpolation, and the reparameterization trick.
Explore how hierarchical attention enables Vision Transformers (ViT) to process sequential data by encoding relative positions.
Explore how hierarchical attention enables Vision Transformers (ViT) to process sequential data by encoding relative positions.
Explore how multi-head attention enables Vision Transformers (ViT) to process sequential data by encoding relative positions.
Explore how positional embeddings enable Vision Transformers (ViT) to process sequential data by encoding relative positions.
Interactively explore how self-attention allows Vision Transformers (ViT) to understand images by capturing global context. Click, explore, and see how it differs from CNNs.
Understanding how gradients propagate through deep neural networks and the vanishing/exploding gradient problems.
Understanding layer normalization technique that normalizes inputs across features, making it ideal for sequence models and transformers.
Understanding the distribution shift problem in deep neural networks that batch normalization solves.
Understanding batch normalization technique that normalizes inputs to accelerate training and improve neural network performance.
Understanding skip connections, residual blocks, and their crucial role in training deep neural networks.