ANN Algorithms Comparison
Compare all approximate nearest neighbor algorithms side-by-side: HNSW, IVF-PQ, LSH, Annoy, and ScaNN. Find the best approach for your use case.
Best viewed on desktop for optimal interactive experience
ANN Algorithms Comparison
Choosing the right approximate nearest neighbor (ANN) algorithm is crucial for building efficient vector search systems. This comprehensive comparison helps you understand the tradeoffs and select the best approach.
Interactive Algorithm Comparison
Visualize and compare different ANN algorithms in action:
ANN Algorithm Comparison
Compare different approximate nearest neighbor search algorithms
Hierarchical Navigable Small World
Instructions: Click on the canvas to place a query point. The algorithm will find approximate nearest neighbors using HNSW.
Multi-layer graph with long-range connections
Algorithm Overview
The ANN Landscape
Algorithm | Type | Key Innovation | Best For |
---|---|---|---|
HNSW | Graph | Hierarchical layers | High recall, real-time |
IVF-PQ | Partition + Compress | Clustering + quantization | Billion-scale, memory-limited |
LSH | Hash | Locality-sensitive functions | Streaming, theoretical guarantees |
Annoy | Tree | Random projection trees | Static data, moderate scale |
ScaNN | Learned | Anisotropic quantization | Google-scale, learned metrics |
DiskANN | Graph | SSD-optimized | Larger than memory datasets |
Detailed Comparison
Performance Metrics
Algorithm | Build Time | Query Time | Memory | Recall@10 | Updates |
---|---|---|---|---|---|
HNSW | O(N log N) | O(log N) | High (1.5-2× data) | 95-99% | Incremental |
IVF-PQ | O(N · K) | O(√(N)) | Very Low (5-10% data) | 85-95% | Batch |
LSH | O(N) | O(1) expected | Low (20-50% data) | 70-90% | Instant |
Annoy | O(N log N) | O(log N) | Medium (1× data) | 85-95% | Rebuild |
ScaNN | O(N log N) | O(√(N)) | Low (10-30% data) | 95-98% | Batch |
Scalability Analysis
Dataset Size → 10K 100K 1M 10M 100M 1B 10B HNSW ████ ████ ████ ███ ██ █ - IVF-PQ ██ ███ ████ ████ ████ ████ ███ LSH ███ ████ ████ ████ ████ ███ ██ Annoy ████ ████ ███ ██ █ - - ScaNN ██ ███ ████ ████ ████ ████ ██ DiskANN █ ██ ███ ████ ████ ████ ████ Legend: ████ Excellent ███ Good ██ Fair █ Poor - Not Suitable
Algorithm Deep Dive
HNSW (Hierarchical Navigable Small World)
Strengths:
- Highest recall rates (95-99%)
- Logarithmic query complexity
- Incremental updates
- Robust to data distribution
Weaknesses:
- High memory usage
- Slow index building
- No native compression
- Cannot delete efficiently
Implementation:
import hnswlib index = hnswlib.Index(space='l2', dim=128) index.init_index(max_elements=1000000, M=16, ef_construction=200) index.add_items(data, ids) index.set_ef(50) # ef for search labels, distances = index.knn_query(queries, k=10)
IVF-PQ (Inverted File + Product Quantization)
Strengths:
- Extreme compression (10-100×)
- Handles billions of vectors
- Fast index building
- Tunable accuracy/speed
Weaknesses:
- Lower recall than HNSW
- Batch updates preferred
- Training phase required
- Quantization loss
Implementation:
import faiss index = faiss.index_factory(128, "IVF1024,PQ32", faiss.METRIC_L2) index.train(training_data) index.add(data) index.nprobe = 10 # clusters to search distances, indices = index.search(queries, k=10)
LSH (Locality Sensitive Hashing)
Strengths:
- Instant updates
- Theoretical guarantees
- Simple implementation
- Works in streaming
Weaknesses:
- Lower recall
- Many parameters to tune
- Sensitive to data distribution
- Memory overhead from tables
Implementation:
from datasketch import MinHashLSH lsh = MinHashLSH(threshold=0.5, num_perm=128) for key, minhash in data: lsh.insert(key, minhash) result = lsh.query(query_minhash)
Annoy (Approximate Nearest Neighbors Oh Yeah)
Strengths:
- Simple and fast
- Memory mapped files
- Good for static data
- Easy to use
Weaknesses:
- No updates (rebuild required)
- Limited to moderate scale
- Tree imbalance issues
- Build time variance
Implementation:
from annoy import AnnoyIndex index = AnnoyIndex(128, 'angular') for i, vector in enumerate(data): index.add_item(i, vector) index.build(10) # 10 trees neighbors = index.get_nns_by_vector(query, 10)
ScaNN (Scalable Nearest Neighbors)
Strengths:
- State-of-the-art recall/speed
- Learned quantization
- Optimized for dot product
- Google-scale tested
Weaknesses:
- Complex configuration
- Training required
- Limited language support
- Newer, less mature
Implementation:
import scann searcher = scann.scann_ops_pybind.builder(data, 10, "dot_product").tree( num_leaves=2000, num_leaves_to_search=100 ).score_ah(2, anisotropic_quantization_threshold=0.2).build() neighbors, distances = searcher.search_batched(queries)
Benchmark Results
ANN-Benchmarks Results (SIFT-1M Dataset)
Recall@10 vs Queries/Second (Higher is Better) 1K QPS 10K QPS 100K QPS HNSW 99.5% 97.2% 92.1% IVF-PQ 95.3% 89.7% 78.2% LSH 87.1% 82.3% 76.5% Annoy 94.2% 88.5% 81.3% ScaNN 98.7% 95.1% 88.9%
Memory Efficiency (768-dim, 10M vectors)
Algorithm | Index Size | Compression Ratio | Build Time |
---|---|---|---|
Original | 30 GB | 1× | - |
HNSW | 45 GB | 0.67× | 2 hours |
IVF-PQ | 0.3 GB | 100× | 30 min |
LSH | 6 GB | 5× | 10 min |
Annoy | 30 GB | 1× | 1 hour |
ScaNN | 3 GB | 10× | 45 min |
Decision Matrix
Choose HNSW When:
if (recall_requirement > 0.95 and dataset_size < 10_000_000 and memory_available > dataset_size * 2 and need_incremental_updates): return "HNSW"
Choose IVF-PQ When:
if (dataset_size > 100_000_000 and memory_constrained and recall_requirement > 0.85 and batch_updates_ok): return "IVF-PQ"
Choose LSH When:
if (streaming_data or need_theoretical_guarantees or very_high_dimensions > 1000 or need_instant_updates): return "LSH"
Choose Annoy When:
if (static_dataset and moderate_size < 10_000_000 and simplicity_important and memory_mapped_needed): return "Annoy"
Choose ScaNN When:
if (google_scale_data and dot_product_similarity and can_afford_training and need_best_recall_speed_tradeoff): return "ScaNN"
Hybrid Approaches
1. Hierarchical Index
Combine multiple algorithms for different scales:
class HybridIndex: def __init__(self, threshold=100000): self.threshold = threshold self.coarse_index = None # IVF for clustering self.fine_indices = {} # HNSW per cluster def build(self, data): # Coarse clustering self.coarse_index = faiss.IndexIVFFlat(...) cluster_ids = self.coarse_index.quantizer.search(data)[1] # Fine indexing per cluster for cluster_id in unique(cluster_ids): cluster_data = data[cluster_ids == cluster_id] if len(cluster_data) > self.threshold: # Use IVF-PQ for large clusters self.fine_indices[cluster_id] = build_ivfpq(cluster_data) else: # Use HNSW for small clusters self.fine_indices[cluster_id] = build_hnsw(cluster_data)
2. Reranking Pipeline
Use fast approximate search then exact reranking:
def search_with_rerank(query, k=10, candidates_multiplier=10): # Stage 1: Fast approximate search candidates = ivfpq_index.search(query, k * candidates_multiplier) # Stage 2: Exact reranking exact_distances = compute_exact_distances(query, candidates) # Return top-k after reranking return top_k(candidates, exact_distances, k)
3. Filtered Search
Combine vector search with metadata filtering:
class FilteredANN: def search(self, vector_query, metadata_filter, k=10): # Over-retrieve to account for filtering candidates = self.ann_index.search(vector_query, k * 5) # Apply metadata filter filtered = [] for candidate_id in candidates: if metadata_filter(self.metadata[candidate_id]): filtered.append(candidate_id) if len(filtered) >= k: break return filtered
Production Considerations
1. Index Building Strategy
def build_index_strategy(num_vectors, vector_dim, memory_budget): data_size = num_vectors * vector_dim * 4 # float32 if memory_budget > data_size * 2: return "HNSW" # Can afford full index elif memory_budget > data_size * 0.5: return "Annoy" # Moderate memory elif memory_budget > data_size * 0.1: return "ScaNN" # Compressed but good recall else: return "IVF-PQ" # Maximum compression
2. Serving Architecture
# Microservices approach services: index_builder: algorithm: IVF-PQ schedule: nightly resources: high_memory search_service: replicas: 10 cache: redis fallback: exact_search reranker: algorithm: exact batch_size: 100 gpu_enabled: true
3. Monitoring Metrics
metrics_to_track = { 'recall@k': measure_recall, 'latency_p50': percentile(latencies, 50), 'latency_p99': percentile(latencies, 99), 'qps': queries_per_second, 'index_size': get_index_memory(), 'build_time': measure_build_time(), 'update_latency': measure_update_time() }
Cost Analysis
Cloud Deployment Costs (AWS, 10M vectors, 768-dim)
Algorithm | Instance Type | Storage | Monthly Cost | QPS |
---|---|---|---|---|
HNSW | r5.4xlarge | 60 GB EBS | $650 | 10,000 |
IVF-PQ | c5.2xlarge | 5 GB EBS | $250 | 8,000 |
LSH | c5.4xlarge | 15 GB EBS | $350 | 15,000 |
Annoy | r5.2xlarge | 40 GB EBS | $400 | 7,000 |
ScaNN | c5.4xlarge | 10 GB EBS | $320 | 12,000 |
Future Trends
1. Learned Indices
- Neural network-based indexing
- Adaptive to data distribution
- Self-tuning parameters
2. GPU Acceleration
- Massive parallelization
- Tensor core utilization
- Real-time billion-scale search
3. Disk-Based Indices
- SSD-optimized algorithms
- Compressed in-memory, full on disk
- Cost-effective for huge datasets
4. Quantum Algorithms
- Grover's algorithm adaptation
- Quadratic speedup potential
- Still theoretical
Recommendations by Use Case
E-commerce Search
Recommendation: IVF-PQ with reranking
- Billions of products
- Cost-sensitive
- Moderate recall acceptable
Facial Recognition
Recommendation: HNSW
- High accuracy critical
- Real-time requirements
- Moderate scale
Document Retrieval
Recommendation: ScaNN or IVF-PQ
- Large document collections
- Semantic search
- Batch updates OK
Social Media Feed
Recommendation: LSH with learned augmentation
- Streaming content
- Instant updates needed
- Personalization important
Scientific Computing
Recommendation: Exact search or HNSW
- Accuracy paramount
- Smaller datasets
- Reproducibility required
Related Concepts
- HNSW Search - Graph-based algorithm
- IVF-PQ - Clustering with compression
- LSH Search - Hash-based approach
- Vector Quantization - Compression techniques
- Index Structures - Data structures overview