ANN Algorithms Comparison

15 min

Compare all approximate nearest neighbor algorithms side-by-side: HNSW, IVF-PQ, LSH, Annoy, and ScaNN. Find the best approach for your use case.

Best viewed on desktop for optimal interactive experience

ANN Algorithms Comparison

Choosing the right approximate nearest neighbor (ANN) algorithm is crucial for building efficient vector search systems. This comprehensive comparison helps you understand the tradeoffs and select the best approach.

Interactive Algorithm Comparison

Visualize and compare different ANN algorithms in action:

ANN Algorithm Comparison

Compare different approximate nearest neighbor search algorithms

Hierarchical Navigable Small World

Instructions: Click on the canvas to place a query point. The algorithm will find approximate nearest neighbors using HNSW.

Multi-layer graph with long-range connections

Algorithm Overview

The ANN Landscape

AlgorithmTypeKey InnovationBest For
HNSWGraphHierarchical layersHigh recall, real-time
IVF-PQPartition + CompressClustering + quantizationBillion-scale, memory-limited
LSHHashLocality-sensitive functionsStreaming, theoretical guarantees
AnnoyTreeRandom projection treesStatic data, moderate scale
ScaNNLearnedAnisotropic quantizationGoogle-scale, learned metrics
DiskANNGraphSSD-optimizedLarger than memory datasets

Detailed Comparison

Performance Metrics

AlgorithmBuild TimeQuery TimeMemoryRecall@10Updates
HNSWO(N log N)O(log N)High (1.5-2× data)95-99%Incremental
IVF-PQO(N · K)O(√(N))Very Low (5-10% data)85-95%Batch
LSHO(N)O(1) expectedLow (20-50% data)70-90%Instant
AnnoyO(N log N)O(log N)Medium (1× data)85-95%Rebuild
ScaNNO(N log N)O(√(N))Low (10-30% data)95-98%Batch

Scalability Analysis

Dataset Size → 10K 100K 1M 10M 100M 1B 10B HNSW ████ ████ ████ ███ ██ █ - IVF-PQ ██ ███ ████ ████ ████ ████ ███ LSH ███ ████ ████ ████ ████ ███ ██ Annoy ████ ████ ███ ██ █ - - ScaNN ██ ███ ████ ████ ████ ████ ██ DiskANN █ ██ ███ ████ ████ ████ ████ Legend: ████ Excellent ███ Good ██ Fair █ Poor - Not Suitable

Algorithm Deep Dive

HNSW (Hierarchical Navigable Small World)

Strengths:

  • Highest recall rates (95-99%)
  • Logarithmic query complexity
  • Incremental updates
  • Robust to data distribution

Weaknesses:

  • High memory usage
  • Slow index building
  • No native compression
  • Cannot delete efficiently

Implementation:

import hnswlib index = hnswlib.Index(space='l2', dim=128) index.init_index(max_elements=1000000, M=16, ef_construction=200) index.add_items(data, ids) index.set_ef(50) # ef for search labels, distances = index.knn_query(queries, k=10)

IVF-PQ (Inverted File + Product Quantization)

Strengths:

  • Extreme compression (10-100×)
  • Handles billions of vectors
  • Fast index building
  • Tunable accuracy/speed

Weaknesses:

  • Lower recall than HNSW
  • Batch updates preferred
  • Training phase required
  • Quantization loss

Implementation:

import faiss index = faiss.index_factory(128, "IVF1024,PQ32", faiss.METRIC_L2) index.train(training_data) index.add(data) index.nprobe = 10 # clusters to search distances, indices = index.search(queries, k=10)

LSH (Locality Sensitive Hashing)

Strengths:

  • Instant updates
  • Theoretical guarantees
  • Simple implementation
  • Works in streaming

Weaknesses:

  • Lower recall
  • Many parameters to tune
  • Sensitive to data distribution
  • Memory overhead from tables

Implementation:

from datasketch import MinHashLSH lsh = MinHashLSH(threshold=0.5, num_perm=128) for key, minhash in data: lsh.insert(key, minhash) result = lsh.query(query_minhash)

Annoy (Approximate Nearest Neighbors Oh Yeah)

Strengths:

  • Simple and fast
  • Memory mapped files
  • Good for static data
  • Easy to use

Weaknesses:

  • No updates (rebuild required)
  • Limited to moderate scale
  • Tree imbalance issues
  • Build time variance

Implementation:

from annoy import AnnoyIndex index = AnnoyIndex(128, 'angular') for i, vector in enumerate(data): index.add_item(i, vector) index.build(10) # 10 trees neighbors = index.get_nns_by_vector(query, 10)

ScaNN (Scalable Nearest Neighbors)

Strengths:

  • State-of-the-art recall/speed
  • Learned quantization
  • Optimized for dot product
  • Google-scale tested

Weaknesses:

  • Complex configuration
  • Training required
  • Limited language support
  • Newer, less mature

Implementation:

import scann searcher = scann.scann_ops_pybind.builder(data, 10, "dot_product").tree( num_leaves=2000, num_leaves_to_search=100 ).score_ah(2, anisotropic_quantization_threshold=0.2).build() neighbors, distances = searcher.search_batched(queries)

Benchmark Results

ANN-Benchmarks Results (SIFT-1M Dataset)

Recall@10 vs Queries/Second (Higher is Better) 1K QPS 10K QPS 100K QPS HNSW 99.5% 97.2% 92.1% IVF-PQ 95.3% 89.7% 78.2% LSH 87.1% 82.3% 76.5% Annoy 94.2% 88.5% 81.3% ScaNN 98.7% 95.1% 88.9%

Memory Efficiency (768-dim, 10M vectors)

AlgorithmIndex SizeCompression RatioBuild Time
Original30 GB-
HNSW45 GB0.67×2 hours
IVF-PQ0.3 GB100×30 min
LSH6 GB10 min
Annoy30 GB1 hour
ScaNN3 GB10×45 min

Decision Matrix

Choose HNSW When:

if (recall_requirement > 0.95 and dataset_size < 10_000_000 and memory_available > dataset_size * 2 and need_incremental_updates): return "HNSW"

Choose IVF-PQ When:

if (dataset_size > 100_000_000 and memory_constrained and recall_requirement > 0.85 and batch_updates_ok): return "IVF-PQ"

Choose LSH When:

if (streaming_data or need_theoretical_guarantees or very_high_dimensions > 1000 or need_instant_updates): return "LSH"

Choose Annoy When:

if (static_dataset and moderate_size < 10_000_000 and simplicity_important and memory_mapped_needed): return "Annoy"

Choose ScaNN When:

if (google_scale_data and dot_product_similarity and can_afford_training and need_best_recall_speed_tradeoff): return "ScaNN"

Hybrid Approaches

1. Hierarchical Index

Combine multiple algorithms for different scales:

class HybridIndex: def __init__(self, threshold=100000): self.threshold = threshold self.coarse_index = None # IVF for clustering self.fine_indices = {} # HNSW per cluster def build(self, data): # Coarse clustering self.coarse_index = faiss.IndexIVFFlat(...) cluster_ids = self.coarse_index.quantizer.search(data)[1] # Fine indexing per cluster for cluster_id in unique(cluster_ids): cluster_data = data[cluster_ids == cluster_id] if len(cluster_data) > self.threshold: # Use IVF-PQ for large clusters self.fine_indices[cluster_id] = build_ivfpq(cluster_data) else: # Use HNSW for small clusters self.fine_indices[cluster_id] = build_hnsw(cluster_data)

2. Reranking Pipeline

Use fast approximate search then exact reranking:

def search_with_rerank(query, k=10, candidates_multiplier=10): # Stage 1: Fast approximate search candidates = ivfpq_index.search(query, k * candidates_multiplier) # Stage 2: Exact reranking exact_distances = compute_exact_distances(query, candidates) # Return top-k after reranking return top_k(candidates, exact_distances, k)

Combine vector search with metadata filtering:

class FilteredANN: def search(self, vector_query, metadata_filter, k=10): # Over-retrieve to account for filtering candidates = self.ann_index.search(vector_query, k * 5) # Apply metadata filter filtered = [] for candidate_id in candidates: if metadata_filter(self.metadata[candidate_id]): filtered.append(candidate_id) if len(filtered) >= k: break return filtered

Production Considerations

1. Index Building Strategy

def build_index_strategy(num_vectors, vector_dim, memory_budget): data_size = num_vectors * vector_dim * 4 # float32 if memory_budget > data_size * 2: return "HNSW" # Can afford full index elif memory_budget > data_size * 0.5: return "Annoy" # Moderate memory elif memory_budget > data_size * 0.1: return "ScaNN" # Compressed but good recall else: return "IVF-PQ" # Maximum compression

2. Serving Architecture

# Microservices approach services: index_builder: algorithm: IVF-PQ schedule: nightly resources: high_memory search_service: replicas: 10 cache: redis fallback: exact_search reranker: algorithm: exact batch_size: 100 gpu_enabled: true

3. Monitoring Metrics

metrics_to_track = { 'recall@k': measure_recall, 'latency_p50': percentile(latencies, 50), 'latency_p99': percentile(latencies, 99), 'qps': queries_per_second, 'index_size': get_index_memory(), 'build_time': measure_build_time(), 'update_latency': measure_update_time() }

Cost Analysis

Cloud Deployment Costs (AWS, 10M vectors, 768-dim)

AlgorithmInstance TypeStorageMonthly CostQPS
HNSWr5.4xlarge60 GB EBS$65010,000
IVF-PQc5.2xlarge5 GB EBS$2508,000
LSHc5.4xlarge15 GB EBS$35015,000
Annoyr5.2xlarge40 GB EBS$4007,000
ScaNNc5.4xlarge10 GB EBS$32012,000

1. Learned Indices

  • Neural network-based indexing
  • Adaptive to data distribution
  • Self-tuning parameters

2. GPU Acceleration

  • Massive parallelization
  • Tensor core utilization
  • Real-time billion-scale search

3. Disk-Based Indices

  • SSD-optimized algorithms
  • Compressed in-memory, full on disk
  • Cost-effective for huge datasets

4. Quantum Algorithms

  • Grover's algorithm adaptation
  • Quadratic speedup potential
  • Still theoretical

Recommendations by Use Case

Recommendation: IVF-PQ with reranking

  • Billions of products
  • Cost-sensitive
  • Moderate recall acceptable

Facial Recognition

Recommendation: HNSW

  • High accuracy critical
  • Real-time requirements
  • Moderate scale

Document Retrieval

Recommendation: ScaNN or IVF-PQ

  • Large document collections
  • Semantic search
  • Batch updates OK

Social Media Feed

Recommendation: LSH with learned augmentation

  • Streaming content
  • Instant updates needed
  • Personalization important

Scientific Computing

Recommendation: Exact search or HNSW

  • Accuracy paramount
  • Smaller datasets
  • Reproducibility required

References

If you found this explanation helpful, consider sharing it with others.

Mastodon